# Hive Performance Tuning Performance tuning your environment is recommended as a regular part of maintaining your system. Here are some performance tuning tips: - [Leveraging Time-based Partitioning](#leveraging-time-based-partitioning) - [Using `WHERE time <=> Integer`](#using-where-time--integer) - [Using `TD_TIME_RANGE`](#using-td_time_range) - [Set Custom Schema](#set-custom-schema) - [`DISTRIBUTE BY ... SORT BY` versus `ORDER BY`](#distribute-by--sort-by-versus-order-by) - [Avoid `SELECT count(DISTINCT field) FROM tbl`](#avoid-select-countdistinct-field-from-tbl) - [Considering the Cardinality within `GROUP BY`](#considering-the-cardinality-within-group-by) - [Efficient Top-k Query Processing using `each_top_k`](#efficient-top-k-query-processing-using-each_top_k) - [Exploding Multiple Arrays at the Same Time with `TD_NUMERIC_RANGE` and `TD_ARRAY_INDEX`](#exploding-multiple-arrays-at-the-same-time-with-td_numeric_range-and-td_array_index) ## Prerequisites - Basic knowledge of Treasure Data. - Basic knowledge of the [Hive Query Lanaguage](https://cwiki.apache.org/confluence/display/Hive/LanguageManual) ## Leveraging Time-based Partitioning All imported data is automatically partitioned into hourly buckets, based on the `time` field within each data record. By specifying the time range to query, you avoid reading unnecessary data and can thus speed up your query significantly. ### Using WHERE time <=> Integer When the `time` field within the WHERE clause is specified, the query parser will automatically detect the partitions to process. This auto detection will not work *if you specify the time with* `float` instead of `int`. ``` [GOOD]: SELECT field1, field2, field3 FROM tbl WHERE time > 1349393020 [GOOD]: SELECT field1, field2, field3 FROM tbl WHERE time > 1349393020 + 3600 [GOOD]: SELECT field1, field2, field3 FROM tbl WHERE time > 1349393020 - 3600 [BAD]: SELECT field1, field2, field3 FROM tbl WHERE time > 13493930200 / 10 [BAD]: SELECT field1, field2, field3 FROM tbl WHERE time > 1349393020.00 [BAD]: SELECT field1, field2, field3 FROM tbl WHERE time BETWEEN 1349392000 AND 1349394000 ``` ### Using TD_TIME_RANGE An easier way to slice the data is to use `TD_TIME_RANGE UDF`. ``` [GOOD]: SELECT ... WHERE TD_TIME_RANGE(time, "2013-01-01 PDT") [GOOD]: SELECT ... WHERE TD_TIME_RANGE(time, "2013-01-01", "PDT", NULL) [GOOD]: SELECT ... WHERE TD_TIME_RANGE(time, "2013-01-01", TD_TIME_ADD("2013-01-01", "1day", "PDT")) ``` However, if you use division in TD_TIME_RANGE, time partition optimization doesn’t work. For instance, the following conditions disable optimization. ```sql [BAD]: SELECT ... WHERE TD_TIME_RANGE(time, TD_SCHEDULED_TIME() / 86400 * 86400)) [BAD]: SELECT ... WHERE TD_TIME_RANGE(time, 1356998401 / 86400 * 86400)) ``` ## Set Custom Schema All tables have two fields: - `v` - `time` You can also set [custom schema](https://docs.treasuredata.com/articles/#!pd/Schema-Management) on the tables. ``` $ td schema:set testdb www_access action:string user:int $ td query -w -d testdb "SELECT user, COUNT(1) AS cnt FROM www_access WHERE action='login' GROUP BY user ORDER BY cnt DESC" ``` After setting the schema, queries issued with named columns instead of `v` will use the schema information to achieve a more optimized execution path. In particular, GROUP BY performance will improve significantly. ## DISTRIBUTE BY ... SORT BY versus ORDER BY In Hive, ORDER BY slows because it forces all the data to go into the same reducer node. By doing this, Hive ensures that the entire dataset is totally ordered. Sometimes we do not require total ordering. For example, suppose you have a table called `user_action_table`where each row has `user_id`, `action`, and `time`. Your goal is to order them by time `per user_id`. If you are doing this with ORDER BY, you would run ``` SELECT time, user_id, action FROM user_action_table ORDER BY user_id, time ``` However, you can achieve the same result with ``` SELECT time, user_id, action FROM user_action_table DISTRIBUTE BY user_id SORT BY user_id, time ``` The reason is because all the rows belonging to the same user_id go to the same reducer ("DISTRIBUTE BY user_id") and in each reducer, rows are sorted by time ("SORT BY time"). This is faster than the other query because it uses multiple reducers as opposed to a single reducer. You can learn more about the [differences between SORT BY and ORDER BY](https://cwiki.apache.org/confluence/display/Hive/LanguageManual+SortBy#LanguageManualSortBy-DifferencebetweenSortByandOrderBy). ## Avoid SELECT count(DISTINCT field) FROM tbl This query looks familiar to SQL users, but this query is very slow because only one reducer is used to process the request. ``` SELECT count(DISTINCT field) FROM tbl ``` Rewrite the query to leverage multiple reducers: ``` SELECT count(1) FROM (SELECT DISTINCT field FROM tbl) t ``` ## Considering the Cardinality within GROUP BY Often, GROUP BY can be faster if you carefully order a list of fields within the GROUP BY clause in order of high cardinality. | | SQL Syntax | | --- | --- | | bad | SELECT GROUP BY gender, uid | | good | SELECT GROUP BY uid, gender | ## Efficient Top-k Query Processing using each_top_k Efficient processing of Top-k queries is a crucial requirement in many interactive environments that involve massive amounts of data. The TD Hive extension `each_top_k` helps run Top-k processing efficiently. - Suppose the following table as the input | student | class | score | | --- | --- | --- | | 1 | b | 70 | | 2 | a | 80 | | 3 | a | 90 | | 4 | b | 50 | | 5 | a | 70 | | 6 | b | 60 | - Then, list top-2 students for each class | student | class | score | rank | | --- | --- | --- | --- | | 3 | a | 90 | 1 | | 2 | a | 80 | 2 | | 1 | b | 70 | 1 | | 6 | b | 60 | 2 | The standard way using SQL window function would be as follows: ``` SELECT student, class, score, rank FROM ( SELECT student, class, score, rank() over (PARTITION BY class ORDER BY score DESC) as rank FROM table ) t WHERE rank <= 2 ``` An alternative and efficient way to compute top-k items using `each_top_k` is as follows: ``` SELECT each_top_k( 2, class, score, class, student -- output other columns in addition to rank and score ) as (rank, score, class, student) FROM ( SELECT * FROM table CLUSTER BY class -- Mandatory for `each_top_k` ) t ``` `CLUSTER BY x` is a synonym of `DISTRIBUTE BY x CLASS SORT BY x` and required when using `each_top_k`. `each_top_k` is beneficial where the number of grouping keys are large. If the number of grouping keys are not so large (e.g., less than 100), consider using `rank() over` instead. The function signature of `each_top_k` is follows: ``` each_top_k(int k, ANY group, double value, arg1, arg2, ..., argN) returns a relation (int rank, double value, arg1, arg2, .., argN). ``` Any number types or timestamp are accepted for the type of `value` but it MUST be not NULL. Do null handling like `if(value is null, -1, value)` to avoid null. If `k` is less than 0, reverse order is used and tail-K records are returned for each `group`. The ranking semantics of `each_top_k` follows SQL’s `dense_rank` and then limits results by `k`. See [Hivemall User Guide](https://cwiki.apache.org/confluence/display/Hive/Top+K+Stats#TopKStats-ColumnLevelTopKStatistics) for further information. ## Exploding Multiple Arrays at the Same Time with TD_NUMERIC_RANGE and TD_ARRAY_INDEX The combination of `TD_NUMERIC_RANGE` and `TD_ARRAY_INDEX` allows you to emit all the elements of an array into multiple rows using the LATERAL VIEW. ``` WITH t1 as ( -- Generate sample data select 'id1' as id, ARRAY(11,12,13) as a, ARRAY(21,22,23,24) as b union all select 'id2' as id, ARRAY(31,32,33) as a, ARRAY(41,42,43,44) as b ) select id, n as index, TD_ARRAY_INDEX( a, n ) as val_1, TD_ARRAY_INDEX( b, n ) as val_2 from ( select id, a, b from t1 ) t2 LATERAL VIEW TD_NUMERIC_RANGE( size( b ) ) n1 as n ``` ![image](/assets/338896.0cf0108134560a52d98d4e220e634691326890cf86b9d24861ce60f939516684.03d68c04.png)